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A Relation between Filter Parameters of the Tow-Thomas-Biquad 
 
In this paper a relation between several filter parameters of the often empolyed Tow-Thomas-
Biquad will be derived, with the aim to make usually necessary compromises between these 
filter parameters comprehensible. Filters at higher frequency and/or high quality factors are 
of special interest here. 
 
Suppose the biquad is configured as a bandpass according to the following signal flow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 
 
The filter therefore possesses the transfer function 
 

mm

m

in

BP

s
Q

s
Q

s

ss
s

sH
V
V

2

2

2
212

2

1

1
)(

ωω

ω

τττ
τ

++
=

++
==

 

 
With the center frequency ωm and the quality factor Q and the bandwidth B= fm / Q, as well as 
the passband gain A0 =1. Now imagine n poles inserted into the feedback path at ωpn , 
representing the frequency deviation of the used operational amplifiers. In a strict sense, the 
poles should have been distributed to the feedback and forward path. Poles in the forward 
path become poles of the total transfer function. But if the pole frequencies lie magnitudes 
above the center frequency ωm, poles not in the feedback loop influence the frequency 
deviation of the filter only marginally in practice. 
 
At frequencies far below the bandwidth of the used operational amplifiers one can, as an 
approximation of first order, replace all poles by one dominant pole: 
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with the normalized frequency Ω = ω/ωm and the normalized pole angular frequencies Ωpl, 

…Ωpn, as well as the normalized substitute angular frequency Ω p (all referenced to ωm). 
The total transfer function in  jΩ is then: 
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For Ω p >> Ω: p
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 the following approximation is valid: 
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The transfer function of the filter with additional poles in the feedback is therefore, under the 
given assumptions for approximation, again a bandpass function of second order with the 
same center frequency, though with a higher Q and a higher passband gain. (A more exact 
analysis would show a shift of the center frequency also.) 
 
The Tow-Thomas-Biquad generally consists of three operational amplifiers. If we assume for 
all operational amplifiers a frequency response of  
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we get 
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Should we need a deviation of the passband gain of one being smaller than 1 dB, and 
respectively a tole rance of Q of maximum ca. 10% , we would have to require  
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leading to the following demand on the operational amplifier bandwidth 
 

mAmp fQf ⋅⋅≥ 30  
 
( mf  is centerfrequency ) 
 
Requiring a maximum deviation of bandpass gain of 
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  one gets: 
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For very small δ though, the decrease in passband gain by the poles in the forward path has to 
be considered. 
One percieves how the OpAmp bandwidth has to increase with Q to maintain filter precision! 
 
Now we want to consider dynamic also. One can see from fig. 1, that inTP VV /  represents a 
lowpass transfer function with Qm ,ω . So one has 
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the approximation being valid for higher quality factors 2≥Q . 
 
Because the output voltage of the operational amplifiers sets an upper limit to the dynamic 
range and the highest signal voltage (or highest signal current, depending on the 
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implemetation) is to be found at TPV , it makes sense to indroduce some quantity D (the name 
should remind of dynamic range), by 
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|| maxV  should be the smallest output voltage limit of the amplifiers used. Obviously D will 

give no information whatsoever about the lower limit of the dynamic range because it doesn't 
consider noise! But D will indicate directly to what extend input and output voltage range of 
the operational amplifiers can be utilized. Over the whole frequency range it has to be at least 
(rail to rail operation) in fig. 1: 
 

2/Bin VDV ⋅≤  
 

with inV  being the effective voltage of a sinus signal at the input and BV  the minimum of 
positive and negative supply voltage. 
 
This leads to a second general condition (approx. for high Q) 
 

constDQ ≤⋅  
 
wich provides a relation between quality factor and dynamic range in the sense of a maximum 
allowable (input or output ) level. "const" depends on the chosen implementation, as will be 
shown in the following example. 
 
Let us now take a look at a circuit implementation of a  Tow-Thomas-bandpass : 
 

 
 
For the transfer function one gets 
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and for the output voltage of the lowpass contained in the feedback path: 
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The formulas yield a passband gain of 120 / RRA −=  and therefore 
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(Again for higher quality factors, meaning about Q≥2) 

Consequently a useful definition of D would be 
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The damped integrator provides DC-gain also. The feedback factor is given by  
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So for higher gain>>1 the bandwidth of the amplifier in the forward path of the filter would 
have to be enhanced by the factor 1/k to keep the phase deviation from worsening. This is at 
least true for voltage feedback amplifiers. But even current feedback amplifiers won't help 
much. Because of the capacitor present at the inverting input, a resistor would have to be 
inserted between the node  1231 ,,, CRRR  and the inverting input of the amplifier – which 
again would make the bandwidth depend on k  respectively 1R and 3R  ! 
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Inserted into the relation found earlier for the OpAmp bandwidth 
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may give at least some qualitative relation between the different parameters. Being – after so 
many steps of simplification – some way from truth, it is recommended to simulate the circuit 
for given amplifiers in any case after having done the first iterations and estimates by hand 
calculation ! 
 
 
Conclusion: 
 
It should have become clear by now, what compromises between center frequency, quality 
factor, precision, passband gain and bandwidth have to be made. Practical experience indeed 
will show what above fo rmulas lead to suspect: For high Q and high center frequencies the 
Tow-Thomas-Biquad may be no longer the right choice of circuit to realize a high quality 
bandpass. That is true especially for the use as filterblock in more complex filters, e.g. a FLF-
structure. Either one uses another resonator topology or partitions the filter further by using 
filter blocks with lower pole Q. 
Similar relations can – by the way – be derived for other filter types like Sallen-Key. 
 
 
 


